Seeing Inside Sand: Visualizing Force Chains with Photoelastic Disks

As their name suggests, so-called “granular materials” are made up of “grains” — small (but macroscopic) pieces of sand, glass beads, coffee grounds, or almost any other solid you can think of. Granular materials can flow like a liquid (like sand in an hourglass), resist deformation like a solid (like the sand under your feet at the beach), or quickly transition between these states (like pebbles in a rockslide).

Putting the controversy over atomic-molecular theory to rest

There are many things that we “know” about the world around us. We know that the Earth revolves around the Sun, that gravity makes things fall downward, and that the apparently empty space around us is actually filled with the air that we breathe. We take for granted that these things are true. But how often do we consider whether we have seen evidence that supports these truths instead of trusting our sources of scientific knowledge?

A Storm of Oscillators

Japanese tree frogs follow a mating ritual that is so strange and beautiful that studying them may give rise to a new kind of science.

Imagine you are a Sea Slug Larva…

Lost, alone, and buffeted by ocean currents: this is the beginning of life for many oceanic larvae. These tiny organisms, often only 100 micrometers in diameter, must seek a suitable new habitat by searching over length scales thousands of times their own. But searching for something you can’t see while being dragged this way and that by ocean currents can’t be easy. How do these microscopic creatures make sense of the turbulent world around them and find their home?

Are squid the key to invisibility?

While many today would associate a “cloak of invisibility” with Harry Potter, the idea of a magical item that renders the wearer invisible is not a new one. In Ancient Greek, Hades was gifted a cap of invisibility in order to overthrow the Titans, whereas in Japanese folklore, Momotar? loots a straw-cloak of invisibility from an ogre, a story which is strangely similar to the English fairytale Jack the Giant-Slayer. Looking to the future in Star Trek, Gene Roddenberry imagined a terrible foe known as the Klingons, a war-driven race that could appear at any moment from behind their cloaking devices – indeed, any modern military would bite your arm off to get hold of this kind of device. Clearly, invisibility is a concept that has captured minds across many cultures, genres, and eras, so it should be no wonder that scientists are working on making it a reality.

Mob mentality improves animal sensing

Imagine you forget to bring money for lunch, and you overhear a teacher mention that there is free pizza somewhere on the third floor of your school. If you’re alone, you might walk around the third floor, trying to detect signs of pizza  – does a room smell delicious? Do you see a suspicious stack of pizza boxes by the door to the gym? Just by using your senses, you can find the pizza. However, it is likely that there are other students on the third floor who also want free food. Maybe if you follow a crowd of students all walking in the same direction and talking about whether they want a Hawaiian or pepperoni slice, they might lead you directly to the pizza!
Which of these methods will be more effective? Following environmental signals, such as the smell of cheese, or social signals, such as the people all heading in the direction of potential pizza? In “Emergent Sensing of Complex Environments by Mobile Animal Groups,” Andrew Berdahl and colleagues seek to find out how searching in groups enhances the sensing ability of animals.

Anti-biofilm Material to Fight Bacterial Formation on Surfaces

Biofilms cause health problems for millions of people worldwide every year, primarily because of infections during surgery or consumption of contaminated packaged foods. To prevent these problems, some scientists are developing surface coatings that will prevent biofilm formation in the first place. In this week’s paper, we will learn about a new technique for creating a microscopic “shield” against the formation and growth of biofilms.

Fast Flow in Tiny Tubes

The “continuum breakdown” is an intriguing aspect of fluid mechanics and physics in general, but is typically very hard to study experimentally. Recently, a group of researchers based in France overcame these difficulties and managed to study water flowing through carbon nanotubes.

3 Easy Steps to (almost) Curing Type 2 Diabetes

Direct insulin injection is considered a traditional treatment for the type II diabetes. Aside from its painstaking process, this treatment imperfectly regulates the dynamics of insulin release. In this post you will read about designing an artificial cell that can manage to release insulin on-demand when needed.