The living silly putty, episode 2: the spreading!

Douezan et al PNAS 2011

In episode one of this series, I presented a research paper by Stéphane Douezan and his colleagues in which they studied a ball of cells (called a cellular aggregate) sitting on a flat surface. After introducing the concept of cellular aggregate wetting by comparing it to the classical system of a drop of water, today I present the main part of the paper which looks at the dynamics of spreading of the cellular aggregate. I strongly suggest that the reader reads the first post before reading this one.

The living silly putty

Have you ever noticed how drops of water have different shapes on a clean piece of glass and in a frying pan? The frying pan surface is coated with a hydrophobic (“water-repellant”) molecule so it does not stick to food, which typically contains a lot of water. As a result, a drop of water will take on a roughly spherical shape to reduce as much as possible its area of contact with the frying pan. If a surface has an even more hydrophobic coating than a frying pan, the drop can even reach a perfectly spherical shape (this is called ultrahydrophobicity).

Dripping, Buckling and Collapsing of a Droplet

The scale bar is 20 micron.

Cell membrane is evolved to be flexible rather than rigid. This fluid 2D sheet plays a key role in cells’s survival, be it tailoring the nutrition trafficking or rendering a mechanical toughness. In recent decades, however, artificial membranes have been developed with enhanced mechanical properties. Of such systems are particle-stabilized emulsions and in this post we will look into characterizing mechanical strength of such emulsion.

When espresso evaporates: the physics of coffee rings

I’ve spilled a lot of coffee over the years. Usually not a whole cup, just a drop or two while pouring. And when it’s just a drop, it’s easy to justify waiting to clean it up. When the drop dries on the table, it forms a stain with a ring (Figure 1), giving it the look of a deliberately outlined splotch of brown in a contemporary art piece (In this context, the phrase “coffee ring” refers to this small-scale, spontaneously formed circular stain rather than the imprint left on a table from the bottom of a wet coffee cup). But the appearance of these stains is simply a result of the physics happening inside the drop. Coffee is made of tiny granules of ground up coffee beans suspended in water, so the ring must mean that these granules migrate to the edge of the droplet when it dries. Why do the granules travel as they dry? Today’s paper by Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greb Huber, Sidney R. Nagel and Thomas A. Witten provides evidence that coffee rings arise due to capillary flow–  the flow of liquid due to intermolecular forces within the liquid and between the liquid and its surrounding surfaces.

Embryonic cell sorting: the living Rubik’s cube

We all started as one single cell. This cell contains all the information to make a complex adult body. Developmental biologists are trying to understand how this cell will first divide to make a dull ball of cells which will then start making dramatic changes in shape to pattern the future organs of the body. One of the difficult questions is how cells that will form the same structure are able to find one another and sort from the mix of other cell types.