Our bodies rely on many types of tube-shaped organs to transport blood, air, water, food, urine, and feces. These tubular organs are stimuli-responsive: they can constrict or dilate, secrete chemicals, or act as a selective barrier in response to biological signals. Developing synthetic versions of natural tissue structures that mimic biological responses is at the cutting edge of tissue engineering, synthetic organ development, and even soft robotics design. But what materials can be used to grow responsive tubes in the lab?