
Note: this section will use ideas from linear algebra and Fourier analysis of
the diffusion equation to solve a pair of coupled partial differential equations. If
any of that sounds like gibberish, don’t worry. You can omit reading this part of
the article without missing out on anything crucial. I will also use the notation
ẋ = ∂x/∂t.

Here, we will follow the specific examples given by Turing himself. First con-
sider the case of two cells on a ring, labeled a and b. Cell a has a concentration
of the two morphogens Xa and Ya, and similar for cell b. The morphogens can
diffuse between the two cells proportionally to the difference in their concentra-
tions. We can then write:

Ẋa = αXa + βYa − 2DX(Xa −Xb)

Ẏa = γXa + δYa − 2DY (Xa −Xb)
(1)

And similar for cell b by switching all the a’s and b’s in the above equations.
The last term is the diffusion term and the factor of 2 comes from the fact that
we are considering these cells to live on a ring. Imagining the cells as squares
connected edge to edge, cell a is actually connected to cell b on both its right and
its left, giving two sources of diffusion. In a more simple case of 1D diffusion, a
particle can diffuse to right or left, so there are two degrees of freedom.

Let’s take the specific example. Looking at Eq. (1), we will use α = 5, β =
−6, γ = 6, δ = −7, DX = 0.5, and DY = 4.5. We will make a change of
variables:

X̄ = Xa+Xb

2 ∆X = Xb−Xa

2

Ȳ = Ya+Yb

2 ∆Y = Yb−Ya

2

Taking the time derivative of each of the new variables and plugging every-
thing in, we find the four resulting equations:

˙̄X = 5X̄ − 6Ȳ ∆̇X = 4∆X − 6∆Y

˙̄Y = 6X̄ − 6Ȳ ∆̇Y = 6∆X − 16∆Y

Writing the first two equations in matrix form, ~̇z = A~z, with ~z = (X̄, Ȳ ), we
see that

A =

(
5 −6
6 −7

)
The eigenvalues of any 2×2 matrix satisfy the characteristic equation λ2 −

Tr(A)λ+ det(A) = 0. Here, Tr(A) = −2 and det(A) = 1. One can then check
that λ is a negative real number, indicating a stable fixed point.

Now, looking at the second two equations, we see

A =

(
4 −6
6 −16

)
This time, Tr(A) = −12 and det(A) = −28, and we find that one eigenvalue

is a positive number, indicating an exponentially growing concentration! This
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is the basis of how patterns can form from a reaction-diffusion equation. The
incredible part is that diffusion is usually known to “smooth” out functions, not
lead to sharp instabilities as it does here.

We can instead consider the case of a continuous ring of cells, where all
morphogens can diffuse freely along the ring. The coupled reaction-diffusion
equations are then:

Ẋ(s, t) = −DX ∂
2X/∂x2 + αXX + βXY + cX

Ẏ (s, t) = −DY ∂
2Y/∂x2 + αYX + βY Y + cY

(2)

Where s is the coordinate going around the ring, s ∈ [0, 2π]. We can look
for solutions of the form X(s, t) = A(t)eλs, and same for Y (s, t), we will find
the same type of solution (within the right parameters) as we found for the set
of ordinary differential equations above. This will be left as an exercise for the
reader (see section 7 of Turing’s original paper).
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